搜索
中关村商情网 首页 综合商情 会议会展 查看内容

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

2020-8-12 15:54| 发布者: admin| 查看: 1824| 评论: 0

摘要: 2020 年雷锋网(公众号:雷锋网)做了一件勇气可嘉的事情。2020 年 8 月 7 日—9 日,一年一度的全球人工智能与机器人峰会在深圳如约举行。CCF-GAIR 2020 由中国计算机学会主办,香港中文大学(深圳)、雷锋网联合承办 ...

2020 年雷锋网(公众号:雷锋网)做了一件勇气可嘉的事情。

2020 年 8 月 7 日—9 日,一年一度的全球人工智能与机器人峰会在深圳如约举行。CCF-GAIR 2020 由中国计算机学会主办,香港中文大学(深圳)、雷锋网联合承办,鹏城实验室、深圳市人工智能与机器人研究院协办。 

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

CCF-GAIR 2020 圆满落幕,雷锋网特将三天的精彩内容整理如下: 

8 月 7 日:首日绽放,期待华章

CCF-GAIR 2020 首日,是无数思想观点碰撞的起点,也是科技与温情交织的一天。

大会组委会主席、清华大学教授、鹏城实验室党委书记杨士强教授以开幕式主持人的身份宣布 CCF-GAIR 2020 正式开幕。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

大会开始,中国计算机学会(CCF)副理事长、华中科技大学计算机科学与技术学院教授金海致辞,点明了今年峰会主题的意义: 

今年大会主题是“AI 新基建、产业新机遇”,一方面,是希望在大会举办 5 周年之际,在前几年大会讨论产学结合、产业落地和垂直细分的基础上,做一个系统的总结和回顾;另一方面,前几年 AI 落地情况下,大会从人工智能基础研究出发,推动人工智能更多的应用、更多的可能,在更多领域的落地。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

AI 前沿专场:5 个报告 + 3 个演讲

作为历年 CCF-GAIR 峰会的主论坛,5 位超重量级学术嘉宾依次带来了精彩报告: 

  • 中国工程院院士、鹏城实验室主任、CCF 会士、ACM/IEEE Fellow 高文《城市大脑 2.0-边端云合理分工的人工智能赋能系统》

  • 南京大学人工智能学院院长、CCF 会士、ACM/AAAI/IEEE/AAAS/IAPR Fellow 周志华《反绎学习(Abductive Learning)》

  • 香港中文大学(深圳)校长讲座教授、AIRS 中心主任、中科院云计算中心首席科学家、IEEE Life Fellow 黄铠《5G Cloud, AIoT and Edge Computing》

  • 北京语言大学信息科学院院长荀恩东《语音智能核心问题——语义理解》

  • 鹏城实验室副主任、香港中文大学(深圳)校长讲座教授、IEEE Fellow 陈长汶《视频物联网——新一代智能化物联网》

在长达 40 分钟的远程视频报告中,高文院士从智慧城市建设的角度出发,探讨了城市大脑从 1.0 到 2.0 版本的演变。高文院士谈到了以云为中心的城市大脑 1.0 及其现状。为解决现存问题,设计新的城市大脑——城市大脑 2.0 彰显出了必要性。同时,借鉴生物视觉系统,将边、端、云都考虑在内的“数字视网膜”的概念也应运而生。

高文院士表示: 

边、端、云结合最核心的技术是数字视网膜,它是整个城市大脑 2.0 的一个基本架构,我们称之为仿生视网膜的计算架构;要想把数字视网膜技术全部用起来,需要用到一些使能技术,包括视频编码、特征编码、联合优化和深度学习模型编码等。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

而在题为《反绎学习(Abductive Learning)》的报告中,周志华教授以人工智能模型 GPT-3 为切入点,抛出了一个问题:如何在现实应用中将人工智能技术与知识结合起来? 

周志华教授谈到,逻辑推理比较容易利用知识,而机器学习比较容易利用事实或者是证据。但是,人类在做决策和分析的时候,其实并不是只依赖于中间某一个方面,而是两者相结合。做人工智能的模型、算法,也应该想办法把它们结合起来。由此,周志华教授谈到了自己最新提出的新概念——反绎学习(Abductive Learning),即从不完备的观察出发,得出最可能的解释。 

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

随后,黄铠教授在报告中首先表达了一个观点: 

计算机一定要走向智能化,如果只是高性能计算 + 序列化的云,那么这里的云计算就缺乏智慧;除了算力、算法,还要有智慧;因此 AI、机器学习、深度学习要布局在云端,而且要围绕云端开发边际云(Edge Cloud)。

黄铠教授在报告中谈到了 5G——他表示,5G 的意义一是在于其速度更快;二是容量,它可以接受更多的信号和数据;三是时延有希望降低到 1 毫秒;四是频率问题。此外,黄铠教授也谈到了 SpaceX 的通信卫星。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

大会上,荀恩东教授在题为《语音智能核心问题——语义理解》的报告中表示,语音智能之所以难,是自然语言的特点决定的——自然语言的歧义无处不在,比如语义、词法、语法、语意、语用、语言多样性等,同时也面临着知识瓶颈。

基于此,荀恩东教授提到了语言智能的四类应用,即分类、生成、抽取,校对。他表示,语言理解是语言智能的主要任务,这涉及到理解的目标、途径和主要模型。他表示:

语言单元在不同的场景里面有不同的表现,有的可能就是简单的词和词之间的关系,词的属性,有的可能是涉及到句子和句子之间的关系,段落和段落等。语言关系在数学上可以表现为序列的关系、几何关系、数的形态和图的形态,复杂的问题是这些形态的组合;所以做语言理解实际上就是把自然语言做结构化,这种结构化是计算机可操作的一个结构化的方案,这种结构化的方案很容易对接落地的需求。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

作为最后一位做大会报告的学术嘉宾,陈长汶教授在题为《视频物联网——新一代智能化物联网》的报告中,主要谈及了新一代视频物联网的特别之处。

陈长汶教授谈到了视频物联网的五大技术挑战: 

  • 感知前端嵌入式视觉数据处理至关重要,并需要与前端存储部件,联网链接,和各级的能耗效率设计联合优化;

  • 可靠和自适应的视频物联网通讯链接能力才可以保证图像/视频数据在联网的大环境下充分得到应用;

  • 视频数据压缩和视频数据分析的集成平台设计才能够提供有效的基于视频物联网应用的有效搜索和检索;

  • 网络安全和个人隐私的恰当平衡才能够保障直观敏感的视觉传感器数据的共享和分布式处理。

  • 建立视频物联网和标准平台是最后的关键,是破解信息孤岛现象以达到全系统优化的必要条件。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

值得一提的是, 大会程序主席、深圳市人工智能与机器人研究院执行院长、国际欧亚科学院院士、IEEE Fellow 李世鹏也在当天下午以专场主持人的身份亮相大会舞台。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

在 AI 前沿专场上,除了五位学术嘉宾报告外,另有三位重要讲者进行了分享。

科大讯飞联合创始人、轮值总裁胡郁在题为《人工智能的颠覆式创新和典型应用》的演讲中提到,人工智能最重要的是基于语音和语言的认知智能,其应用场景主要有两大方面:交互智能和专家系统——交互智能可以让机器像人一样自然地交互,应用到视觉、语音和传感器等各方面的技术;专家系统能够通过人工智能的学习能力,学习专家的知识和经验。 

未来,人机交互将改变人和机器之间的关系,改变流量的入口。在行业方面,会有越来越多的专家系统会起到供应侧改革的作用,包括教育、医疗、政法、智慧城市等。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

京东集团技术副总裁、IEEE Fellow、京东人工智能研究院常务副院长何晓冬带来的演讲题为《多模态人机对话与交互:理解、创作、决策》。

何晓冬博士提到了超大规模语言模型实验的三方面挑战:

  • 技术路线是端到端的“暴力美学”还是知识与推理驱动?

  • 评测指标在生成对话回复层次上“拟人”还是在整体体验上“拟人”?

  • 系统任务是否只是语言理解? 

对于这些挑战,何晓冬博士表示: 

在开展了 GPT-3 这样的多任务大数据语言模型之后,我们可以做更多需要知识驱动的任务,这需要知识和常识的支撑,需要推理和决策。另外一个是数据,我们还需要更多模态的数据,模态的交叉会带来比目前高几个数量级的数据,比如说跨模态的信息集合和连接,可以通过大量的多模态数据,使得无监督学习可以更高效获得更全面的模型,比如说通过海量文本、语音、图像、视频数据,建设跨模态数据集和知识库。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

依图科技 CTO、新加坡工程院院士、IEEE / IAPR Fellow 颜水成的演讲题目是《芯智能,新基建》。 

颜水成教授主要从新基建的产业大规模应用出发,谈到学术界和工业界在人工智能探索方面的差别;其中,学术界追求算法的可复制性、新颖性和公平性,而工业界的最终面向对象是客户,而客户是不关心过程的。

基于此,颜水成教授认为,工业界要想让人工智能走向落地,一个非常重要的点是要让人工智能的成本降低,让用户用得起;这时候就需要把算法的效能和芯片的效能通过协同开发的方式去形成人工智能的解决方案,即芯智能。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

纪念 Thomas S. Huang 专场:中国计算机视觉的 40 年传承 

在 CCF-GAIR 2020 首日下午的纪念 Thomas S. Huang(大家称之为 Tom)圆桌论坛环节中,众多与黄煦涛教授有着深厚的渊源的 AI 大咖齐聚一堂,共同追忆一代宗师:

  • 陈长汶:鹏城实验室副主任、香港中文大学(深圳)校长讲座教授、IEEE Fellow;

  • 沈向洋:清华大学教授、前微软全球执行副总裁;

  • 杨士强:清华大学教授、鹏城实验室党委书记、CCF 会士;

  • 张正友:腾讯 AI Lab & Robotics X 主任、CVPR 2017 大会主席、ACM/IEEE Fellow;

  • 颜水成:依图科技 CTO、新加坡工程院院士、IEEE/IAPR Fellow;

  • 田奇:华为云人工智能领域首席科学家、IEEE Fellow;

  • 王孝宇:云天励飞首席科学家;

  • 文镇:腾讯看点内容 AI 实验室负责人。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

各位嘉宾依次回忆了自己眼中的 Tom——陈长汶教授谈到了 Tom 的桃李满天下,沈向洋教授则是泪洒现场,杨士强教授提到了 Tom 对清华大学讲席教授组制度的影响,张正友博士强调了 Tom 对计算机视觉的影响是全球性的,颜水成教授谈到了 Tom 的爱和谦卑,田奇教授表示成为 Tom 的学生是学术生涯中最幸运的事情,王孝宇博士谈到了 Tom 的谦逊,文镇博士强调 Tom 终身对新技术、新想法保持追求。

更多内容可点击:https://www.leiphone.com/news/202008/qMkUYsScNfqV6pEZ.html

8 月 8 日:行业大咖全景式展示未来智能 

峰会进入第二天,包括机器人前沿专场、AIoT 专场、智能驾驶专场、AI 芯片专场、视觉智能·城市物联专场、前沿语音技术专场、AI 源创专场在内的七大专场也拉开了帷幕。

机器人前沿专场:面向未来的机器人

由 IEEE 国际机器人与自动化学会广东分会协办的机器人前沿专场开始,加拿大工程院院士、IEEE Fellow 张宏首先以远程视频的形式带来了题为《移动机器人全局定位技术与方法》的报告。

张宏教授从分享学术研究的角度出发,主要谈及了移动机器人全局定位。张宏教授表示:

机器人在定位方面还是有欠缺的:1.对环境的语义表达、理解能力有所不足。我们和机器人的理解不一样,机器人生活在数字世界里面,我们生活在抽象的概念里面,让机器人和人共融就必须要有语义这个层次。2.需要更高的鲁棒性。机器人的鲁棒性满足不了实际工作的要求,经常死机,所以鲁棒性从各个角度都需要提高,使得最终的实现目标是自主移动机器人,而不是旁边总站着一个“护士”和技术员来帮助移动机器人工作,这也是大家可以努力的方向。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

报告过后,几位嘉宾也带来了精彩主题演讲。

上海交通大学讲席教授、国家 973 计划首席科学家、国家杰出青年基金获得者高峰在题为《探月足式飞跃机器人设计与控制》的演讲中,介绍了团队在月球空间站机器人方面的进展。他详细介绍了腿式着陆行走器的设计方法和实验成果,其中强调了六足腿式设计的优点。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

北京大学教授、国家重点研发计划“智能机器人”总体专家组专家刘宏教授的演讲主题为《面向公共服务机器人的新一代 AI 技术》。演讲中,刘宏教授通过新一代人工智能要面临的三大问题,指出了新一代人工智能的关键词为:大数据智能、跨媒体智能、人机混合智能、群体智能、自主协同与决策等等。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

随后,清华大学研究员/优必选人形机器人首席科学家赵明国也奉上了主题为《基于计算的智能机器人控制》的精彩演讲。演讲中,赵明国教授提及了两个案例:

  • 无人自行车:其团队提出了两条新思路——以芯片为基础加上机器人,用机器人做芯片或者 AI 算法的研究平台证明算法可行,反馈到机器人上;机器人+芯片,机器人用芯片解决算力不足的问题,把机器人性能往前提一步。

  • 双足机器人:1990 年,被动行走纯机械结构机器人就已出现,其团队目前也正在利用动力学等方法进行研究。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

最后,大道智创联合创始人龙建睿发表题为《机器人导航技术的通用平台和垂直场景》的演讲。演讲主要围绕移动服务机器人导航技术展开:

垂直应用仍然是机器人行业(尤其是服务机器人行业)的主流和驱动力;机器人产业的链条会变得更长,具有更多的环节,每个环节本身内部可能出现比较多的通用性;环境改造对机器人会更友好,场景改造会借助新基建和智慧城市的努力而使服务机器人的市场更加繁荣;机器人的应用运营也会越来越重要。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

AIoT 专场:重塑“疫后”智能生活新秩序

作为 CCF-GAIR 每年最精彩的产学研融合分论坛,今年 AIoT 专场论坛邀请到了 AIoT 行业不同领域的“关键先生”来到现场,从不同的角度来剖析在新基建下的 AIoT 行业关键技术和发展趋势。

首先,中国工程院院士、国家 973 项目首席科学家、中国大数据技术与应用联盟理事长谭建荣在题为《5G&AIoT 新基建:关键技术与发展趋势》的报告中,重点回答了 5G 与 AIoT 、新基建的发展问题。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

谭院士表示: 

5G 与物联网正在连接高速增长的阶段,未来数百亿的设备并发联网产生交互需求、数据分析需求将和 AIoT 更加深度融合。AIoT 对实体经济的融合赋能使得 AIoT 业务量享有十万亿市场空间。2019 年,受益于城市端 AIoT 业务规模化落地及边缘计算的初步普及,中国 AIoT 市场规模突破 3000 亿大关直指 4000 亿量级。

随后是七个精彩演讲。

百度集团副总裁、智能生活事业群组总经理景鲲在题为《AI 助手“破圈” 智能生活新机遇》的演讲中,展示了小度在家庭场景、酒店与地产场景、车载场景、随身场景的应用,介绍了小度智能语音助手在疫情期间的使用情况。景鲲认为,后疫情时代,家庭智能生活将迎来新机遇,特别是家庭娱乐、家庭教育、家庭医疗、家庭电商等方面。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

随后,华为无线 AI 副总裁孙宾带来了《5G+5“机”,开启万物互联世界新篇章》的主题分享。孙宾通过华为当前的智能工厂案例、机器视觉在电力行业的应用案例以及智能矿业案例,阐述了 5G 在千行百业中承担的作用。

TCL 实业控股 CTO、鸿鹄实验室总经理孙力随后带来了《家电行业智能化转型》的主题分享。孙力围绕人工智能,主要解释了 3 个问题——为什么智能化、怎么做智能化和智能化背后和人工智能有什么关系?

在题为《智能物联网系统安全:挑战和机遇》的演讲中,浙江大学网络空间安全学院院长、IEEE Fellow 任奎将关注点放在了技术上——硬件、系统与网络安全。通过对四个应用案例的阐释,任奎教授表明了浙大网安团队在智能无线网络安全方面的考虑:一是全生命周期保护;二是全技术栈保护。

此外,美团首席科学家、AI 平台总经理夏华夏在《AI+生活:打造未来生活服务新基建》的演讲中,通过对 AI 发展、产业、场景的简要回顾,分享了如何用 AI+生活打造生活服务新篇章。

绿城中国智慧园区事业部总经理陈霄的演讲题为《AI+生活:打造未来生活服务新基建》,他分享了对于地产商与 AI 结合的理解和相关应用案例。

最后,雅观科技 CIO、智慧空间研究院院长高健伦在《智变未来,数字孪生,理想生活》的主题演讲中阐述了雅观对于智慧家居和智慧社区的看法。

智能驾驶专场:量产和落地是关键

在为期一天的智能驾驶专场中,无数思想观点碰撞出了火花。

首先登场的是车路协同国家重点研发计划项目负责人、西安电子科技大学领军教授、IEEE/IET Fellow、戴升智能 CEO 毛国强。在题为《智慧公路与智能驾驶-新基建下如何把握机遇》的演讲中,毛国强教授认为,聪明的车离不开智慧的路。无人车要大规模铺开,需要道路提供信息。但能够为智能网联车辆服务的智慧公路大规模应用的前提,是智能网联车的渗透率达到一定程度。

干货满满,亮点多多!2020 全球人工智能与机器人峰会圆满落幕 | CCF-GAIR 2020

【智能驾驶专场现场图】

清华大学自动化系系统工程研究所教授、博士生导师姚丹亚提到了车路协同的两个重大作用:

  1. 可以实现汽车安全性能的升级,从被动安全(安全带、气囊)到主动安全(ADAS),然后再到协同安全(AC-DAS)。

  2. 可以成为下一代智能交通系统的基础。

随后,东风汽车技术中心智能网联部部长边宁登台演讲时称 ,L3- 是指最终由人承担安全责任;L3+ 由系统承担安全责任。同时,未来汽车会朝着两个方向发展——一个是智慧汽车,另一个是智慧出行。

锐明技术 CTO 李恒则将重点放在运输安全方面——道路上的安全挑战主要可以分为两类,第一类来自公共安全;第二类来自驾驶安全。基于这些场景,锐明部署了全套的安全管理方案,其中 AI 发挥着至关重要的作用。

接着,全球 MIT TR35 获奖者、人工智能顶尖期刊 IEEE TPAMI 编委、ICCV/CVPR/ECCV 领域主席、阿里自动驾驶实验室主任王刚在会上表示,末端物流场景存在一些挑战。基于此,阿里在算法智能、硬件层面、系统架构层面,都提出了相应措施。

此外,mobileye 大中华区总经理童立丰谈到了数据对自动驾驶落地的重要性;法雷奥中国区 CTO 顾剑民谈到了未来自动驾驶可以细分成的两条路线;福瑞泰克智能系统有限公司总裁张林表示,当下福瑞泰克已经能够实现 L2 级自动驾驶方案量产,L2.9 的方案也已进入量产准备;滴滴自动驾驶公司 COO 孟醒明确指出出行是滴滴的基因,出行的重点是安全;腾讯产业安全运营部总经理吕一平认为,信息安全应成为智能网联汽车重要的部分;威盛电子(上海)有限公司高级技术总监唐亮着重介绍了任我行智驾平台;昆仲资本合伙人姚海波更是从投资人角度谈到了自动驾驶产业的现状。

更多内容请点击:https://www.leiphone.com/news/202008/w7UdmfPNnaMdxHAG.html 


12下一页

鲜花

握手

雷人

路过

鸡蛋

最新评论

返回顶部